Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3334, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637549

RESUMO

Phase-encoded oscillating neural networks offer compelling advantages over metal-oxide-semiconductor-based technology for tackling complex optimization problems, with promising potential for ultralow power consumption and exceptionally rapid computational performance. In this work, we investigate the ability of these networks to solve optimization problems belonging to the nondeterministic polynomial time complexity class using nanoscale vanadium-dioxide-based oscillators integrated onto a Silicon platform. Specifically, we demonstrate how the dynamic behavior of coupled vanadium dioxide devices can effectively solve combinatorial optimization problems, including Graph Coloring, Max-cut, and Max-3SAT problems. The electrical mappings of these problems are derived from the equivalent Ising Hamiltonian formulation to design circuits with up to nine crossbar vanadium dioxide oscillators. Using sub-harmonic injection locking techniques, we binarize the solution space provided by the oscillators and demonstrate that graphs with high connection density (η > 0.4) converge more easily towards the optimal solution due to the small spectral radius of the problem's equivalent adjacency matrix. Our findings indicate that these systems achieve stability within 25 oscillation cycles and exhibit power efficiency and potential for scaling that surpasses available commercial options and other technologies under study. These results pave the way for accelerated parallel computing enabled by large-scale networks of interconnected oscillators.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37022082

RESUMO

Oscillatory neural network (ONN) is an emerging neuromorphic architecture composed of oscillators that implement neurons and are coupled by synapses. ONNs exhibit rich dynamics and associative properties, which can be used to solve problems in the analog domain according to the paradigm let physics compute. For example, compact oscillators made of VO 2 material are good candidates for building low-power ONN architectures dedicated to AI applications at the edge, like pattern recognition. However, little is known about the ONN scalability and its performance when implemented in hardware. Before deploying ONN, it is necessary to assess its computation time, energy consumption, performance, and accuracy for a given application. Here, we consider a VO 2 -oscillator as an ONN building block and perform circuit-level simulations to evaluate the ONN performances at the architecture level. Notably, we investigate how the ONN computation time, energy, and memory capacity scale with the number of oscillators. It appears that the ONN energy grows linearly when scaling up the network, making it suitable for large-scale integration at the edge. Furthermore, we investigate the design knobs for minimizing the ONN energy. Assisted by technology computer-aided design (TCAD) simulations, we report on scaling down the dimensions of VO 2 devices in crossbar (CB) geometry to decrease the oscillator voltage and energy. We benchmark ONN versus state-of-the-art architectures and observe that the ONN paradigm is a competitive energy-efficient solution for scaled VO 2 devices oscillating above 100 MHz. Finally, we present how ONN can efficiently detect edges in images captured on low-power edge devices and compare the results with Sobel and Canny edge detectors.

3.
Sci Rep ; 12(1): 19377, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371590

RESUMO

Volatile memristors are versatile devices whose operating mechanism is based on an abrupt and volatile change of resistivity. This switching between high and low resistance states is at the base of cutting edge technological implementations such as neural/synaptic devices or random number generators. A detailed understanding of this operating mechanisms is essential prerequisite to exploit the full potentiality of volatile memristors. In this respect, multi-physics device simulations provide a powerful tool to single out material properties and device features that are the keys to achieve desired behaviors. In this paper, we perform 3D electrothermal simulations of volatile memristors based on vanadium dioxide (VO[Formula: see text]) to accurately investigate the interplay among Joule effect, heat dissipation and the external temperature [Formula: see text] over their resistive switching mechanism. In particular, we extract from our simulations a simplified model for the effect of [Formula: see text] over the negative differential resistance (NDR) region of such devices. The NDR of VO[Formula: see text] devices is pivotal for building VO[Formula: see text] oscillators, which have been recently shown to be essential elements of oscillatory neural networks (ONNs). ONNs are innovative neuromorphic circuits that harness oscillators' phases to compute. Our simulations quantify the impact of [Formula: see text] over figures of merit of VO[Formula: see text] oscillator, such as frequency, voltage amplitude and average power per cycle. Our findings shed light over the interlinked thermal and electrical behavior of VO[Formula: see text] volatile memristors and oscillators, and provide a roadmap for the development of ONN technology.


Assuntos
Óxidos , Compostos de Vanádio , Temperatura , Redes Neurais de Computação
4.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1996-2009, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34495849

RESUMO

Brain-inspired computing employs devices and architectures that emulate biological functions for more adaptive and energy-efficient systems. Oscillatory neural networks (ONNs) are an alternative approach in emulating biological functions of the human brain and are suitable for solving large and complex associative problems. In this work, we investigate the dynamics of coupled oscillators to implement such ONNs. By harnessing the complex dynamics of coupled oscillatory systems, we forge a novel computation model-information is encoded in the phase of oscillations. Coupled interconnected oscillators can exhibit various behaviors due to the strength of the coupling. In this article, we present a novel method based on subharmonic injection locking (SHIL) for controlling the oscillatory states of coupled oscillators that allow them to lock in frequency with distinct phase differences. Circuit-level simulation results indicate SHIL effectiveness and its applicability to large-scale oscillatory networks for pattern recognition.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Encéfalo , Simulação por Computador , Humanos , Rede Nervosa
5.
Front Neurosci ; 15: 694549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819831

RESUMO

Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture with oscillators representing neurons and information encoded in oscillator's phase relations. In an ONN, oscillators are coupled with electrical elements to define the network's weights and achieve massive parallel computation. As the weights preserve the network functionality, mapping weights to coupling elements plays a crucial role in ONN performance. In this work, we investigate relaxation oscillators based on VO2 material, and we propose a methodology to map Hebbian coefficients to ONN coupling resistances, allowing a large-scale ONN design. We develop an analytical framework to map weight coefficients into coupling resistor values to analyze ONN architecture performance. We report on an ONN with 60 fully-connected oscillators that perform pattern recognition as a Hopfield Neural Network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...